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Abstract. The two-mode Raman coupled model governed by the Milburn equation is studied by the dy-
namical algebraic method. With the help of an SU(2) dynamical algebraic structure, we find an exact
solution of the Milburn equation for an effective two-mode Raman coupled Hamiltonian. The exact solu-
tion is then used to discuss the influence of intrinsic decoherence on nonclassical properties of the system,
such as collapses and revivals of the atomic inversion, oscillations of the photon number distribution and
squeezing of the radiation field.
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1 Introduction

In the past two decades, there has been great interest
in the Jaynes-Cummings model [1] of a single two-level
atom interacting with a single mode of a quantized cav-
ity field. The Jaynes-Cummings model may be the sim-
plest solvable model describing the interaction between
two dissimilar quantum systems and exhibits many inter-
esting quantum effects, such as collapses and revivals of
Rabi oscillations [2,3], squeezing of the radiation field [4],
sub-Poissonian statistics [5], etc. The development of
the experiments in high-Q superconductivity cavities has
demonstrated these interesting nonclassical properties and
simulated the interest of studying the Jaynes-Cummings
model and its various generalizations.

In recent years, much attention has been focused on the
study of an effective two-level atom interacting with two
quantized field modes through a Raman interaction, called
two-mode Raman coupled model [6–8]. It has also been
noted that the dynamics of such a system reveals many
remarkable features that are very different from those of
the usual Jaynes-Cummings model. The main advantage
of this model is that one can use one mode to modulate
or control the output of the other mode.

On the other hand, there has been increased interest
in the problem of decoherence in quantum mechanics be-
cause of its possible applications in quantum measurement
processes and quantum computers [9]. In recent years,
there have several proposals to solve the decoherence prob-
lem. In particular, Milburn [10] has proposed a simple
model of intrinsic decoherence based on an assumption
that on sufficiently short time steps the system does not
evolves continuously under unitary evolution but rather in
a stochastic sequence of identical unitary transformations.

a e-mail: phy xujb@dial.zju.edu.cn

This model gives a simple modification of standard quan-
tum mechanics and the quantum coherence is automati-
cally destroyed as the quantum system evolves. Milburn
considered only the free evolution of a simple quantum sys-
tem. The intrinsic decoherence in the Jaynes-Cummings
model with one quantized field mode has been studied
[11,12].

In this paper, we will consider an effective two-mode
Raman coupled model governed by the Milburn equation.
Based on an SU(2) dynamical algebraic structure, we find
an exact solution of the Milburn equation for the effective
two-mode Raman coupled Hamiltonian and apply it to
study the influence of intrinsic decoherence on nonclassi-
cal properties of the system. It is shown that the intrinsic
decoherence in the atom-field interaction suppresses these
nonclassical effects in the effective two-mode Raman cou-
pled model.

The paper is organized as follows. In Section 2, we
present an exact solution of the Milburn equation for the
effective two-mode Raman coupled model by making use
of dynamical algebraic method. In Section 3, we study the
influence of intrinsic decoherence on nonclassical proper-
ties of the system, such as collapses and revivals of the
atomic inversion, oscillations of the photon number distri-
bution and squeezing of the radiation field. In Section 4,
there are some concluding remarks.

2 Exact solution of the Milburn equation

We consider a quantum system described by the density
operator ρ(t). In standard quantum mechanics, dynam-
ics of the system is governed by the evolution operator
U(t) = exp(−iHt), where H is Hamiltonian of the sys-
tem. Milburn assumed [10] that on sufficiently short time
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steps the system does not evolves continuously under uni-
tary evolution but rather in a stochastic sequence of iden-
tical unitary transformations. Based on this assumption,
he has derived the equation for the time evolution density
operator ρ(t) of the quantum system [10]

dρ(t)
dt

= γ

[
exp

(
− i
γ
H

)
ρ(t) exp

(
i
γ
H

)
− ρ(t)

]
, (1)

where γ is the mean frequency of the unitary time step.
This equation formally corresponds to the assumption
that on sufficiently short time steps the system evolves
with a probability p(τ) = γτ . In the limit γ −→∞, equa-
tion (1) reduces to the ordinary von Neuman equation for
the density operator.

Expanding equation (1) to first order in γ−1, Milburn
obtained the following dynamical equation,

dρ(t)
dt

= −i[H, ρ(t)]− 1
2γ

[H, [H, ρ(t)]], (2)

which is the Milburn equation. Milburn discussed the so-
lution of equation (2) for a harmonic oscillator and a pro-
cessing spin system. The exact solution of the Milburn
equation for Jaynes-Cumming model with one quantized
mode has also been obtained [11,12]. In this paper, we
will study an effective two-mode Raman coupled model
governed by the Milburn equation and present an exact
solution of Milburn equation for the system.

We introduce three auxiliary superoperators R,S, T
defined by

exp(Rτ)ρ(t) =
∞∑
k=0

1
k!
Hkρ(t)Hk;

exp(Sτ)ρ(t) = exp(−iHτ)ρ(t) exp(iHτ);

exp(Tτ)ρ(t) = exp
(
− τ

2γ
H2

)
ρ(t) exp

(
− τ

2γ
H2

)
, (3)

which lead to

Rρ =
1
γ
HρH; Sρ = −i[H, ρ]; Tρ =

1
2γ
{H2, ρ}, (4)

where H is the Hamiltonian of the system. From equa-
tions (3, 4), it is easy to obtain the formal solution of the
Milburn equation as follows

ρ(t) = eRteSteTtρ(0)

=
∞∑
k=0

(
t

γ
)k

1
k!
Hke−iHte−

1
2γH

2tρ(0)e−
1
2γH

2teiHtHk

=
∞∑
k=0

(
t

γ
)k

1
k!
Mkρ(0)M †k, (5)

where ρ(0) is the density operator of the initial atom-field
system and Mk is defined by

Mk = Hk exp(−iHt) exp
(
− t

2γ
H2

)
. (6)

In the following, we will solve the Milburn equation for the
two-mode Raman coupled model with the Hamiltonian [6]

H = ω1a
†
1a1 + ω2a

†
2a2 +

ω

2
σz + g(a1a

†
2σ+ + a†1a2σ−),

(7)

where σz , σ± are the atomic spin flip operators character-
izing the effective two-level atom with transition frequency
ω and a1(a2), a†1(a†2) are annihilation (creation) operators
of the 1st (2nd) mode light field of frequencies ω1(ω2) re-
spectively. The Hamiltonian (7) ignores stark shifts and
the parameter g is the atom-field coupling constants.

It is easily proved that there exists two constants of
motion in the Hamiltonian (7)

K1 = a†1a1 +
1 + σz

2
; K2 = a†2a2 +

1− σz
2

, (8)

which commute with Hamiltonian (7). We then define the
operators

S0 =
σz
2

; S+ =
a1a
†
2σ+√

K1K2

; S− =
a†1a2σ−√
K1K2

, (9)

we can show that operators S±, S0 satisfy the following
commutation relations

[S0, S±] = ±S±; [S+, S−] = 2S0, (10)

which constitute an SU(2) algebra. In term of the SU(2)
generators, we can rewrite the Hamiltonian (7) as

H = ω1

(
K1 −

1
2

)
+ ω2

(
K2 −

1
2

)
+∆S0

+ g
√
K1K2(S+ + S−), (11)

where ∆ = ω + ω2 − ω1. With the help of the SU(2) dy-
namical algebraic structure, we can diagonalize the Hamil-
tonian (11) by unitary transformations,

U = exp
[
θ(K1,K2)

2
(S+ − S−)

]
, (12)

with

θ(K1,K2) = tan−1 2g
√
K1K2

∆
, (13)

and get transformed Hamiltonian

H ′ = UHU†

= ω1

(
K1 −

1
2

)
+ ω2

(
K2 −

1
2

)
+ 2Ω(K1K2)S0,

(14)

where

Ω(K1,K2) =

√
∆2

4
+ g2K1K2. (15)
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ρn(t) =
∞X

n1=0

∞X
n2=0

∞X
m1=0

∞X
m2=0

Qn1Qn2Q
∗
m1Q

∗
m2 |ψ

n(e, n1, n2)〉〈ψn(e,m1,m2)|; (22)

|ψn(e, n1, n2)〉 = Mn|e, n1, n2〉

=
1

2

�
fn+(n1 + 1, n2) exp[−if+(n1 + 1, n2)t] exp

�
−f

2
+(n1 + 1, n2)t

2γ

�

− fn−(n1 + 1, n2) exp[−if−(n1 + 1, n2)t] exp

�
−f

2
−(n1 + 1, n2)t

2γ

��
g
p

(n1 + 1)n2

Ω(n1 + 1, n2)
|n1 + 1, n2 − 1, g〉

+
1

2

�
fn+(n1 + 1, n2) exp[−if+(n1 + 1, n2)t] exp

�
−f

2
+(n1 + 1, n2)t

2γ

��
1 +

∆

2Ω(n1 + 1, n2)

�

+ fn−(n1 + 1, n2) exp[−if−(n1 + 1, n2)t] exp

�
−f

2
−(n1 + 1, n2)t

2γ

� �
1− ∆

2Ω(n1 + 1, n2)

��
|n1, n2, e〉; (23)

f±(n1 + 1, n2) = ω1

�
n1 +

1

2

�
+ ω2

�
n2 −

1

2

�
±Ω(n1 + 1, n2);

Ω(n1 + 1, n2) =

r
∆2

4
+ g2(n1 + 1)n2 (24)

In terms of equations (12, 14), it is easy to obtain

Mk = U†H ′k exp(−iH ′t) exp
(
− t

2γ
H ′2

)
U

=
1
2

[
f̂k+ exp(−if̂+t) exp

(
− f̂

2
+t

2γ

)

+f̂k− exp(−if̂−t) exp

(
− f̂

2
−t

2γ

)]

+
1
2

[
f̂k+ exp(−if̂+t) exp

(
− f̂

2
+t

2γ

)

−f̂k− exp(−if̂−t) exp

(
− f̂

2
−t

2γ

)]

×
[

∆σz
2Ω(K1,K2)

+
g(a1a

†
2σ+ + a†1a2σ−)
Ω(K1,K2)

]
, (16)

where

f̂± = ω1

(
K1 −

1
2

)
+ ω2

(
K2 −

1
2

)
±Ω(K1,K2). (17)

We now assume that initially the fields are prepared in
coherent states |α1〉 and |α2〉:

|ψ(0)〉F = |α1〉|α2〉 =
∞∑

n1=0

∞∑
n2=0

Qn1Qn2 |n1, n2〉, (18)

where

Qni = e−
1
2 |αi|

2 αnii√
ni!

, (19)

and the atom was prepared in excited states |e〉. Then the
density operator ρ(0) of the initial state can be written as

ρ(0) =
∞∑

n1=0

∞∑
n2=0

∞∑
m1=0

∞∑
m2=0

Qn1Qn2Q
∗
m1
Q∗m2

× |e, n1, n2〉〈e,m1,m2|. (20)

Substituting equations (16, 20) into (5), we can obtain
explicit expression for the density operator ρ(t) as follows:

ρ(t) =
∞∑
n=0

(
t

γ

)n 1
n!
ρn(t), (21)

where

see equations (22–24) above.

Equations (21–24) represent the exact solution of the
Milburn equation for the two-mode Raman coupled model
with Hamiltonian (7). The advantage of our approach is
that it is easy to study the dynamics and statistics of atom
and field quantity for arbitrary initial states.

3 Influence of the intrinsic decoherence
on nonclassical properties of the system

In this section, we study the influence of the intrinsic deco-
herence on nonclassical properties of the two-mode Raman
coupled model. In order to show how the intrinsic decoher-
ence modifies the time evolution of the atomic inversion,
we calculate the expectation values of the operator σz . Us-
ing the exact solution ρ(t), we find that atomic inversion
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P (n1, n2, t) = 〈n1, n2|TrA[ρ(t)]|n1, n2〉

= |Qn1Qn2 |2
�

1− g2(n1 + 1)n2

2Ω2(n1 + 1, n2)

�
1− cos[2Ω(n1 + 1, n2)t] exp

�
−2t

γ
Ω2(n1 + 1, n2)

���

+ |Qn1−1Qn2+1|2
g2n1(n2 + 1)

2Ω2(n1, n2 + 1)

�
1− cos[2Ω(n1, n2 + 1)t] exp

�
−2t

γ
Ω2(n1, n2 + 1)

��
(26)

is given by

〈σz(t)〉 = Tr[ρ(t)σz ]

= 1− g2
∞∑

n1=0

∞∑
n2=0

|Qn1Qn2 |2
(n1 + 1)n2

Ω2(n1 + 1, n2)

×
{

1− cos[2Ω(n1 + 1, n2)t] exp
[
−2t
γ
Ω2(n1 + 1, n2)

]}
.

(25)

The probability of finding ni (i = 1, 2) photon in the ith
mode of the radiation field is also found to be

see equation (26) above.

It is obvious that both equations (25, 26) in the limit
γ → ∞ reduce to the usual expression for the atomic
inversion and the photon number distribution in the two-
mode Raman coupled model governed by the Schrödinger
dynamics [6]. It is generally accepted that the revivals
of the atomic inversion as well as the oscillations in the
photon number distribution appears as a consequence of
quantum coherence which are built up during the inter-
action between the radiation field and atom. From equa-
tions (23, 24), we can see that in the time evolution the
additional term in the Milburn equation leads to the ap-
pearance of the decay factors exp[−(2t/γ)Ω2(n1 + 1, n2)]
which are responsible for the destruction of the revivals of
the atomic inversion and oscillation in the photon number
distribution. The numerical result for three values of the
decoherence parameter γ and two values of the detuning
parameter∆ are shown in Figures 1 and 2 for the time evo-
lution of the atomic inversion (we have set g = 1). From
these figures, we see that for large values of the γ, the
atom exhibits the revival as predicted by the Shrödinger
equation. With the decreases of the parameter γ, we can
observe rapid deterioration of the revivals of the atomic
inversion. These figures clearly describe the effect of the
intrinsic decoherence.

We now turn to discuss the influence of intrinsic deco-
herence on squeezing of radiation field. We introduce two
slowly varying quadrature operators [6]

X
(i)
1 (t) =

1
2

(aieiωit + a†i e
−iωit);

X
(i)
2 (t) = − i

2
(aieiωit − a†ie−iωit). (27)

These operators satisfy the commutation relations

[X(i)
1 (t), X(j)

2 (t)] =
i
2
δij , (28)

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

(a)

< σ
z(t

)>
0 10 20 30 40 50

-1.0

-0.5

0.0

0.5

1.0
(b)

 

< σ
z(t

)>

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0
(c)

 
< σ

z(t
)>

t
Fig. 1. The atomic inversion 〈σz(t)〉 as a function of t with
∆ = 0 for |α1|2 = |α2|2 = 15 and (a) γ = 105, (b) γ = 104, (c)
γ = 103.

which implies the Heisenberg uncertainly relations

〈(∆X(i)
1 )2〉〈(∆X(i)

2 )2〉 ≥ 1
16
· (29)

Squeezing is said to exist whenever 〈(∆X(i)
j )2〉 ≤ 1/4

(i, j = 1, 2).
In order to characterize the influence of intrinsic deco-

herence on the squeezing, we calculate the Q parameter
defined by

Q
(i)
j =

〈(∆X(i)
j )2〉 − 0.25
0.25

, (30)

where −1 ≤ Q(i)
j < 0 for squeezing.



J.-B. Xu et al.: Influence of intrinsic decoherence on nonclassical properties 299

〈N1〉 = |α1|2 +
1

2
(1− 〈σz(t)〉); (32)

〈a2
1〉 =

1

4

X
m1,m2

Q∗m1Qm1+2|Qm2 |2

× {exp(ir+t−
t

2γ
r2
+)[
p

(m1 + 1)(m1 + 2)(1 +
∆

2Ω(m1 + 1, m2)
)(1 +

∆

2Ω(m1 + 3, m2)
) +

g2
p

(m1 + 1)(m1 + 2)(m1 + 3)m2

Ω(m1 + 1,m2)Ω(m1 + 3, m2)
]

+ exp(ir−t−
t

2γ
r2
−)[
p

(m1 + 1)(m1 + 2)(1− ∆

2Ω(m1 + 1,m2)
)(1− ∆

2Ω(m1 + 3, m2)
) +

g2
p

(m1 + 1)(m1 + 2)(m1 + 3)m2

Ω(m1 + 1,m2)Ω(m1 + 3, m2)
]

+ exp(is+t−
t

2γ
s2

+)[
p

(m1 + 1)(m1 + 2)(1 +
∆

2Ω(m1 + 1, m2)
)(1− ∆

2Ω(m1 + 3,m2)
)− g2

p
(m1 + 1)(m1 + 2)(m1 + 3)m2

Ω(m1 + 1, m2)Ω(m1 + 3,m2)
]

+ exp(is−t−
t

2γ
s2
−)[
p

(m1 + 1)(m1 + 2)(1− ∆

2Ω(m1 + 1,m2)
)(1 +

∆

2Ω(m1 + 3,m2)
)− g2

p
(m1 + 1)(m1 + 2)(m1 + 3)m2

Ω(m1 + 1, m2)Ω(m1 + 3,m2)
]};

(33)
〈a1〉 =

1

4

X
m1,m2

Q∗m1Qm1+1|Qm2 |2

× {exp(ia+t−
t

2γ
a2

+)[
√
m1 + 1(1 +

∆

2Ω(m1 + 1, m2)
)(1 +

∆

2Ω(m1 + 2, m2)
) +

g2√m1 + 1(m1 + 2)m2

Ω(m1 + 1, m2)Ω(m1 + 2, m2)
]

+ exp(ia−t−
t

2γ
a2
−)[
√
m1 + 1(1− ∆

2Ω(m1 + 1,m2)
)(1− ∆

2Ω(m1 + 2,m2)
) +

g2
√
m1 + 1(m1 + 2)m2

Ω(m1 + 1,m2)Ω(m1 + 2, m2)
]

+ exp(ib+t−
t

2γ
b2+)[
√
m1 + 1(1 +

∆

2Ω(m1 + 1,m2)
)(1− ∆

2Ω(m1 + 2, m2)
)− g2

√
m1 + 1(m1 + 2)m2

Ω(m1 + 1,m2)Ω(m1 + 2, m2)
]

+ exp(ib−t−
t

2γ
b2−)[
√
m1 + 1(1− ∆

2Ω(m1 + 1, m2)
)(1 +

∆

2Ω(m1 + 2, m2)
)− g2

√
m1 + 1(m1 + 2)m2

Ω(m1 + 1, m2)Ω(m1 + 2,m2)
]}, (34)
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Fig. 2. The atomic inversion 〈σz(t)〉 as a function of t with
∆ = 10 for (a) γ = 105, (b) γ = 104, (c) γ = 103. All other
conditions are the same as in Figure 1.

Through some algebraic manipulations, we give the
expression of Q(1)

j for the two-mode Raman coupled model

Q
(1)
1 = 2〈N1〉+ 〈a2

1〉e2iωit + 〈a†21 〉e−2iωit

− [〈a1〉eiωit + 〈a†1〉e−iωit]2;

Q
(1)
2 = 2〈N1〉 − 〈a2

1〉e2iωit − 〈a†21 〉e−2iωit

+ [〈a1〉eiωit − 〈a†1〉e−iωit]2, (31)

where

see equations (32–34) above.

with

r± = −2ω1 ±Ω(m1 + 1,m2)∓Ω(m1 + 3,m2);

s± = −2ω1 ±Ω(m1 + 1,m2)±Ω(m1 + 3,m2);

a± = −ω1 ±Ω(m1 + 1,m2)∓Ω(m1 + 2,m2);

b± = −ω1 ±Ω(m1 + 1,m2)±Ω(m1 + 2,m2). (35)

From equations (31–35), we can see that in the time evo-
lution the additional term in the Milburn equation leads
to the appearance of the decay factors in each term in
the expression of the Q parameter. In Figure 3, we plot
the parameter Q(1)

1 for three values of the decoherence
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Fig. 3. Q

(1)
1 as a function of t with ∆ = 0 (solid line) and

∆ = 10 (dashed line) for |α1|2 = 5; |α2|2 = 10 and (a) γ = 106,
(b) γ = 102, (c) γ = 10.

parameter γ and two values of the detuning parameter
∆. It is quite clear from these figures that the quadrature
squeezing decay with the decrease of the decoherence pa-
rameter γ. The cases of the off-resonant (dashed line) and
resonant (solid line) are compared in Figure 3. The off-
resonant model is more susceptible to decoherence than
resonant model. These figures exhibit the clear influence
of the intrinsic decoherence on the squeezing of the radi-
ation field.

4 Concluding remarks

We have found the exact solution of the Milburn equa-
tion (2) for the two-mode Raman coupled model. Using
the exact solution, we have discussed the influence of the
intrinsic decoherence on the nonclassical properties of the
system such as the revivals of the atomic inversion, oscil-
lation of the photon number distribution and squeezing
of the radiation field. It is shown that the intrinsic de-
coherence in the atom-field interaction suppress the non-
classical effects in the two mode Raman coupled model.
The approach adopted here can be extended to the cases
of time-dependent atom-field coupling or a N -level atom
interacting with quantized field modes.
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